- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Demirhan, Hilmi (1)
-
Dou, Wenwen (1)
-
Gopalakrishnan, Seetha (1)
-
Zadrozny, Wlodek (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this research, we take an innovative approach to the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset. We expand on it by incorporating causal inference for medical videos, a novel approach in this field. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 models, the system aims to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. This paper extends the work from the MedVidQA challenge by introducing causality extraction to enhance the interpretability of localized video content. Subtitles are segmented to identify causal units such as cause, effect, condition, action, and signal. Prompts guide GPT-4 and Gemini Pro 1.5 in detecting and quantifying causal structures while analyzing explicit and implicit relationships, including those spanning multiple subtitle fragments. Our results reveal that both GPT-4 and Gemini Pro 1.5 perform better when handling queries individually but face challenges in batch processing for both temporal localization and causality extraction. Despite these challenges, our innovative approach has the potential to significantly advance the field of Health Informatics. In this research, we address the Video Corpus Visual Answer Localization (VCVAL) task using the MedVidQA dataset and take it a step further by integrating causal inference for medical videos. By leveraging the state-of-the-art GPT-4 and Gemini Pro 1.5 model, our system is designed to localize temporal segments in videos and analyze cause-effect relationships from subtitles to enhance medical decision-making. Our preliminary results indicate that while both models perform well for some videos, they face challenges for most, resulting in varying performance levels. The successful integration of temporal localization with causal inference can provide significant improvement for the scalability and overall performance of medical video analysis. Our work demonstrates how AI systems can uncover valuable insights from medical videos, driving significant progress in medical AI applications and potentially making significant contributions to the field.more » « lessFree, publicly-accessible full text available May 23, 2026
An official website of the United States government
